

SATELLINE[®]-M3-R3 RADIO RECEIVER MODULE

USER GUIDE

Version 1.6

IMPORTANT NOTICE

All rights to this manual are owned solely by SATEL OY (referred to in this user guide as SATEL). All rights reserved. The copying of this manual (without the written permission from the owner) by printing, copying, recording or by any other means, or the full or partial translation of the manual to any other language, including all programming languages, using any electrical, mechanical, magnetic, optical, manual or other methods or devices is forbidden.

SATEL reserves the right to change the technical specifications or functions of its products, or to discontinue the manufacture of any of its products or to discontinue the support of any of its products, without any written announcement and urges its customers to ensure, that the information at their disposal is valid.

SATEL software and programs are delivered "as is". The manufacturer does not grant any kind of warranty including guarantees on suitability and applicability to a certain application. Under no circumstances is the manufacturer or the developer of a program responsible for any possible damages caused by the use of a program. The names of the programs as well as all copyrights relating to the programs are the sole property of SATEL. Any transfer, licensing to a third party, leasing, renting, transportation, copying, editing, translating, modifying into another programming language or reverse engineering for any intent is forbidden without the written consent of SATEL.

SATEL PRODUCTS HAVE NOT BEEN DESIGNED, INTENDED NOR INSPECTED TO BE USED IN ANY LIFE SUPPORT RELATED DEVICE OR SYSTEM RELATED FUNCTION NOR AS A PART OF ANY OTHER CRITICAL SYSTEM AND ARE GRANTED NO FUNCTIONAL WARRANTY IF THEY ARE USED IN ANY OF THE APPLICATIONS MENTIONED.

Salo, FINLAND 2012

Copyright: 2012 SATEL Oy

No part of this document may be reproduced, transmitted or stored in a retrieval system in any form or by any means without the prior written permission of SATEL Oy. This document is provided in confidence and must not be distributed to third parties without the express permission of SATEL Oy.

RESTRICTIONS ON USE

SATELLINE-M3-R3 radio receiver module has been designed to operate on 403-473 MHz, the exact use of which differs from one region and/or country to another. The user of a radio receiver module must take care that the said device is not operated without the permission of the local authorities on frequencies other than those specifically reserved and intended for use without a specific permit.

SATELLINE-M3-R3 is allowed to be use in the following countries, either on licence free channels or on channels where the operation requires a licence. More detailed information is available at the local frequency management authority.

Countries: AT, BE, BG, CA, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MT, NL, NO, PL, PT, RU, RO, SE, SI, SK, US

WARNING! Users of SATELLINE-M3-R3 radio receiver modules in North America should be aware, that due to the allocation of the frequency band 406.0 – 406.1 MHz for government use only, the use of radio receiver module on this frequency band without a proper permit is strictly forbidden.

This integration guide applies to the combination of Firmware version/Hardware version listed in the table below. See www.satel.com for the newest firmware and Integration Guide version.

Firmware version	Hardware version	Note!
07.20.1.8.8	SPL0017c, 4	

PRODUCT CONFORMITY

Hereby, SATEL Oy declares that SATELLINE-M3-R3 radio receiver module is in compliance with the essential requirements (radio performance, electromagnetic compatibility and electrical safety) and other relevant provisions of Directive 1999/5/EC. Therefore the equipment is labelled with the following CE-marking. The notification sign informs user that the operating frequency range of the device is not harmonised throughout the market area, and the local spectrum authority should be contacted before the usage of the radio module.

DECLARATION of CONFORMITY

In Accordance with 1999/5/EC Directive

of the European Parliament and of the Council of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity

Doc No:	SATEL-DC-RTTE-095		
Manufacturer:	SATEL Oy		
Address:	POB 142, (Meriniitynkatu 17), 24101 Salo, Finland		
Products :	Туре	Mode!	

SATEL-TA22

We, the manufacturer of the above mentioned products, hereby declare that these products conform to the essential requirements of the European Union directive 1999/5/EC. This Declaration of Conformity is based on the following documents:

Doc. No	Type of Product	Test Specification	Laboratory / Date of Issue
201610B	SATELLINE-M3-R3	EN 300 113-1 V.1.6.2	NEMKO / Espoo 02.03.2012
201610B	SATELLINE-M3-R3	EN 301 489-1 V.1.9.2, -5 V.1.3.1	NEMKO / Espoo 02.03.2012
201610C	SATELLINE-M3-R3	EN 60950-1:2005 (2rd Ed)	NEMKO / Espoo 04.05.2012

Salo on the 1st of June, 2012

SATELLINE-M3-R3

WARRANTY AND SAFETY INSTRUCTIONS

Read these safety instructions carefully before using the product:

-Warranty will be void, if the product is used in any way that is in contradiction with the instructions given in this manual

-The radio receiver module is only to be operated at frequencies allocated by local authorities, and without exceeding the given maximum allowed output power ratings. SATEL and its distributors are not responsible, if any products manufactured by it are used in unlawful ways.

-The devices mentioned in this manual are to be used only according to the instructions described in this manual. Faultless and safe operation of the devices can be guaranteed only if the transport, storage, operation and handling of the devices is appropriate. This also applies to the maintenance of the products.

TABLE OF CONTENTS

IMPO	RTANT NOTICE
REST	RICTIONS ON USE 2
PROD	OUCT CONFORMITY
WARF	RANTY AND SAFETY INSTRUCTIONS
TABL	E OF CONTENTS
1.	INTRODUCTION7
1.1	Terms and abbreviations7
1.2	Description of the product7
1.3	DTE connector
1.4	Pin order of the DTE connector9
2	MECHANICAL CONSIDERATIONS 11
2.1	Fixing device to host11
2.2	Sheet-metal standoff11
2.3	Soldering / host board instructions for mounting pegs
3	CHANGING PARAMETERS USING SL-COMMANDS
3.1	SL-Commands14
3.2	Operating modes14
3.3	Safe mode15
3.4	Power up / power down scenarios15
3.5	Turn ON using command16
3.6	Turn OFF using command16
3.7	Turn OFF using pin16

3.8	Restart
3.9	Startup sequence
3.10	Shutdown sequence
3.11	Time parameters for start-up and shutdown sequences
3.12	Stat pin 20
3.13	Service pin
3.14	Antenna interface
4	TECHNICAL SPECIFICATIONS21
4.1	Absolute maximum ratings (* 22
4.2	DC electrical specifications23
5	DEFAULT DELIVERY VALUES 24
6	CONSIDERATIONS25
6.1	Emi Interferers 25
6.2	Electrostatic discharge
6.3	Using the device in unmanned high reliability applications
7	APPENDIX
7.1	SL-COMMANDS
8	VERSION HISTORY

1. INTRODUCTION

SATEL OY is a Finnish electronics and Telecommunications Company specialising in the design and manufacture of wireless data communication products. SATEL designs, manufactures and sells radio modems intended for use in applications ranging from data transfer to alarm relay systems. End users of SATEL products include both public organisations and private individuals.

SATEL OY is the leading European manufacturer of radio modems. SATEL radio modems have been certified in most European countries and also in many non-European countries.

This document is the integration guide for the SATELLINE-M3-R3 radio receiver module. It is intended to describe how to use the module and how to integrate it into a host device.

Abbreviation	Description	
CTS	Clear To Send, handshaking signal used in asynchronous	
	communication.	
DTE	Data Terminal Equipment (typically computer, terminal)	
ESD	Electrostatic discharge	
RD	Receive Data	
RTS	Ready To Send, handshaking signal used in asynchronous	
	communication.	
RAM	Random Access Memory	
LDO	Low dropout regulator	

1.1 Terms and abbreviations

1.2 Description of the product

The SATELLINE-M3-R3 is a UHF radio receiver module, which receives data from UHF transmissions made by SATELLINE-3AS family and similar transmitters. The module is designed to be as compact and power efficient as possible. It has been developed especially suitable for integration into battery powered and space constrained host applications benefiting from UHF communications.

The module receives data from the Air interface (Ant. Connector, RF), demodulates and decodes the data and sends the data payload to the DTE port.

The DTE interface is used to provide power to the module and communicate with the module.

1.3 DTE connector

The DTE connector is a 20-pin pass-through connector. This connector allows the pin to enter the connector from the bottom side and protrude thru the module PCB to the top side, allowing flexible mounting heights with various pin lengths.

The device is produced as either a TOP entry variant or a BOTTOM entry variant. The variant desired shall be specified when ordering the device.

Entry from bottom of device, see picture below.

Pin numbering of 1.27 mm pitch DTE connector. View from bottom side of unit

Entry from top of device, see picture below.

1.4 Pin order of the DTE connector

Direction IN is data from DTE (Data Terminal Equipment) to the radio receiver module. Direction OUT is data from the radio module to the DTE.

Pin No.	Signal name	Type/Direction	Description
1,2	VCC_IN	POWER/IN	4.0V DC input
3,4	GND	GND/-	Ground reference for power and signals
5	VCC_IO	POWER/IN	EXTERNAL Voltage= 1.8 3.3 V IO POWER.
			"1" LEVEL FOR CMOS IO
			INTERNAL Voltage = not connected
6	ena_mod	IO/IN	>1,2 V= Module power is ON,
			<0.2 V= Module power is OFF
7	RD1	CMOS/OUT	Port 1 - Receive data.
			Data received by module is output on this pin.
8	CTS1	CMOS/OUT	Port 1 - Clear To Send.
			Module signals when it is ready to receive data.
9	TD1	CMOS/IN	Port 1 - Transmit Data.
			Data from DTE to module shall be sent on this
			pin.
10	RTS1	CMOS/IN	Port 1 - Ready to send.
			DTE can use this pin to signal when it is ready to
			receive data from module.
11	RD2	CMOS/OUT	Option for second serial port, not implemented
12	CTS2	CMOS/OUT	
13	TD2	CMOS/IN	
14	RTS2	CMOS/IN	
15	STAT	CMOS/OUT	Status signal. "1" when device is OK and
			working normally. Various toggle sequences for
			other state indications. See separate section of
			manual. Can drive LED directly.

16	GPIO9	CMOS/BIDIR	GPIO – not used
17	SERVICE	IN	Input for service access. Internally pulled high. Pull low / drive low to set UART1 (RD1,TD1) into known state. See separate section of manual.
18	GPIO11	CMOS/BIDIR	GPIO – not used
19	PPS	CMOS/IN	Pulse per second input. A CMOS input for pulse per second signal output from GPS receivers. Intended to sync time and frequency of receiver to other radios.
20	REF_FREQ_IN	CMOS/IN	Frequency input. A 1 MHz20 MHz input. Generally from a GPS receiver clock. Used for reference frequency synchronization.

2 MECHANICAL CONSIDERATIONS

2.1 Fixing device to host

The radio receiver module can be mounted on to the host by using spacers and screws. Max. screw diameter is 3mm.

2.2 Sheet-metal standoff

In space constrained applications, where there is no room for using screws for fixing, the device can be soldered on to the host board by using metal clips which are part of the bottom shielding of the device. To accommodate for variation in stacking height and host board thickness, there are two standoffs lengths available.

The user must cut the bridge between the desired standoff and shielding screen with a plier, and then bend up the standoff 90° to prepare the standoff for use.

2.3 Soldering / host board instructions for mounting pegs

3 CHANGING PARAMETERS USING SL-COMMANDS

The controlling terminal device can change the configuration settings of the module. This is accomplished with the help of SL-commands. SL-commands can be used to change e.g. the frequency or addresses. It is also possible to ask the radio receiver module to show current settings which are in use.

3.1 <u>SL-Commands</u>

An SL-command is a continuous string of characters, which is separated from other data by pauses which are equal or greater than time defined by Pause length parameter (default=3 characters) in the set-up. No extra characters are allowed at the end of an SL-command. Serial interface settings are the same as in data transfer. SL-command is properly recognised also in the case when the command string is terminated in <CR> (=ASCII character no. 13, Carriage Return, 0x0d) or <CR> (<LF> = ASCII char. no. 10, Line Feed, 0x0a). If multiple SL commands are sent to the module, the next command can be given after receiving the response ("Ok" or "Error") of the proceeding command. In addition, it is recommended to implement a timeout to the terminal software for recovering the case when no response is received from the radio module.

The receiver module will acknowledge all commands by returning an "OK" (command carried out or accepted) or the requested value, or an "ERROR" (command not carried out or interpreted as erroneous) message.

The SL-commands are listed in appendix, page 27.

3.2 **Operating modes**

The radio receiver module has the	following modes of operation:
-----------------------------------	-------------------------------

Mode	Function	Description
Ready to	Search for sync	Module is searching for the start of a radio
receive from RF		transmission from the RF signal.
	Receive data	The module has found a valid radio transmission
		and is receiving data.
Safe mode		Mode is entered when a fault has been detected
		and the device has been Rebooted. In safe mode
		fault codes can be read from the module.
Powersave	Sleep1	Will turn the module into a state where it will hold
		parts of the radio on, wakeup will take <5ms
Powersave	Sleep2	Will turn off the entire radio section and put CPU
		into sleep mode. Consumption is lower, but
		wakeup time is approx. <40ms.

PS-mode	Receiver ON/OFF	PS-mode is meant to be used in systems where the message length and interval have been planned to be almost constant. This is how the equipment can be set to powersave mode for specific period in order to save power consumption.

3.3 <u>PS -mode</u>

When started, the module analyzes 7 messages and calculates the average of message interval. According to shortest cycle time, the sleep mode is activated. Wake-up is automatically activated 60 ms before next transmission (wake-up time= cycle time – 60 ms). New cycle study is automatically done after every 100 packages. If the interval is shorter than 10 ms from average, additional 1 ms is added to the average value.

If the wake-up time differs up to 100 ms before 100 packages, the new calculating will start. If measured cycle time remains constant, 60 ms marginal time will be shortened with 1 ms steps. When PS-mode is used, interval can change +/- 40 ms without losing any messages.

3.4 <u>Safe mode</u>

When a fault has been detected by the Firmware, the module is set to Safe mode. In this mode the module toggle's the Stat Pin in 250ms interval indicating an Error and reboots the device after 5s. When connecting to the device with SATEL Configuration Manager the Error code is shown in pop up box. If the device does not recover after multiply reboots, please contact SATEL Oy.

SATEL Configuration Manager can be downloaded from website <u>www.satel.com/downloads</u>. The version 1.3.6 or newer is compatible with SATELLINE-M3-R3 radio receiver module.

3.5 Power up / power down scenarios

The receiver module can be set in five (5) states, "ON", "OFF", "sleep1"," sleep2", "PS-Mode". When power is applied to the module, the module can be switched ON/OFF using the ENA_MODEM pin to >1.2V.

3.6 Turn ON using command

When being in sleep mode, the receiver module will be automatically wake up after the CPU senses a state change in the TD1 pin. The first data byte is lost because the CPU UART is shut off, and is not able to read data.

To turn the module ON from modes sleep1 or sleep2

- 1) Issue a state change to DT1 (toggle pin (minimum pulse duration time 10 μ s) or issue a byte on the UART (for example 0x00))
- 2) Wait for "OK" -response from the module
- 3) Start communicating normally

Module will remain powered ON until a new sleep command is issued.

3.7 Turn OFF using command

Two control commands are available for putting the device into different states of power save mode. (see SL-list).

3.8 Turn OFF using pin

The module can be shut down by driving ENA_IO line to <0.2V.

In the "OFF" state current consumption is only that of leakage current from a LDO (xx uA). In this state all non parts off the module are powered down and all settings / state information that are not stored in NVM is reset.

3.9 <u>Restart</u>

After startup the module can be restarted by issuing a SL command, upon which the module will shut down all circuitry, and Reboot the CPU. (see SL-list)

3.10 Startup sequence

The following diagram will describe the startup sequence.

3.11 Shutdown sequence

"**Z**"

Figure. Shutdown sequence with VCC_IO supplied internally.

"X"

IO-LINES

3.12 Time parameters for start-up and shutdown sequences

Parar	neter	Min time	Recom. Time ^{(*}	Explanation
T _{vic}	Input capacitor	0	>50µs	When voltage is applied to VCC_IN the filter
	charge time			capacitors inside the module are charged, creating a
				small current surge. If the feeding power supply is not
				very strong it is recommended to wait this time before
				rising ENA_MODEM to minimize current surge.
T _{ioms}	lo module start	0	>50µs	ENA_MODEM rise enable the LDOs feeding the
	time			FPGA and CPU inside the module. Waiting for the
				internal parts of the module start before applying
				external VCC_IO is good design practice to avoid
				latchup problems.
T _{iovs}	lo voltage startup	0	>50µs	it is considered good design practice to KEEP all IO
	time			signals (except ENA_MODEM) low or floating until
				the internal parts of the module have power and the
				IO voltage is stable.
T _{ior}	IO drive fall time	0	>10 µs	It is considered good design practice to set all IO
				signals (except ENA_MODEM) low or floating before
				starting to shut shutdown the receiver module. This
				way any latchup/brownout problems can be avoided.
T _{iovf}	IO voltage	0	>TBD	When using external IO voltage it is considered good
	discharge time			design practice to shut off this voltage and to let it
				drop before shutting down the module.
T _{Idof}	LDO discharge	0	>TBD	To avoid any possibility of reverse biasing of
	time			regulators inside the module, it is considered good
				design practice to use ENA_MODEM to shut down
				the regulators before deactivating VCC_IN.

Table. Startup and shutdown sequence parameters.

*) Recommendations:

The radio receiver module is designed and tested for the minimum times mentioned in the table. The recommendations are there for those who want to do the very best possible startup and startup sequences.

3.13 <u>Stat pin</u>

The STAT pin indicates the status of the device. It can be used to drive a LED using a series resistor. STAT pin drive capability is 10mA (loads the VCC_IO if provided externally). The STAT pin has the following behavior.

Blink cycle	Mode
"1" - statically	module is operational "searching for a new frame"
"0" for the endurance of the	"0" when module is receiving data from air interface.
received frame.	In practical cases will toggle at the frequency of the data
	packets on the air interface.
"0" statically	Module is in sleep1 or sleep2 mode
pin is toggled in 1s interval	Module is in programming mode
Pin is toggled in 250ms interval	Module has detected a fault, fault codes can be read in
	the programming mode.

Table. Modes of STAT pin.

3.14 <u>Service pin</u>

The SERVICE pin is used to set the UART1 into a known state. Pulling this pin low will activate the service mode and set the UART1 into 38400, n, 8, 1. This is intended for service access of the module, to have a known serial port setting in order to access the module settings. The pin does not affect any permanent settings, nor does it change the mode of the module. Releasing/ driving the pin high will return serial port 1 into the configured state.

3.15 Antenna interface

The antenna interface is a 50 Ω coaxial connector. Matching networks are not included on the module and should be placed in the host application if the antenna is not 50 Ω . The HIROSE U.FL compatible connector is located on the TOP side of the board.

NOTE! The used connector has gold plated contacts - whereas a standard HIROSE U-FL has silver plated contacts.

If silver - gold joints are not allowed in your product, use gold plated cable-connector to mate to this device.

4 TECHNICAL SPECIFICATIONS

SATELLINE-M3-R3 complies with the following international standards (requirements applicable to receiver):

EN 300 113-1 V.1.6.2 (RF / spurious radiations) EN 301 489-1 V.1.9.2, -5 V.1.3.1 (EMC-requirements) EN 60950-1:2005 (2nd Ed) (Safety Standard) FCC CFR47 PART 15

	RECEIVER	Note!
Frequency Range	403473 MHz	
Frequency Control	Synthesized 6.25 kHz tuning resolution	
Channel Bandwidth	12.5 kHz and 25 kHz, software derived	
Tuning range	70 MHz	
Sensitivity (*	- 114 dBm @ 12.5 kHz	
	-111 dBm @ 25 kHz	FEC On
	(BER < 10 E-3)	
Co-channel Rejection	> -12 dB	
(*		FEC On
Adjacent Channel	> 45 dB @12.5 kHz	
Selectivity (*	> 52 dB @ 25 kHz	FEC On
Intermodulation	> 60 dB	
Attenuation (*		FEC On
Blocking (*	> 86 dB	
		FEC On
Spurious Rejection (*	> 60 dB	
		FEC On
Power Consumption,		
typical (*	570mW	RX-mode
Power Consumption	SLEEP 1: 240 mW	
(*	SLEEP 2: 150 mW	Sleep mode

(* test conditions: $+25^{\circ}C$ / VCC_IN 4V

	DATA MODULE	
Timing	(UART)	
	CMOS Inputs and outputs referred to IO voltage	
	provided by user (1.8 3.3 V)	
Electrical Interface	(RTS, CTS, RX, TX, +VCC, GND)	
Interface Connector	Samtec 20-pin through hole, CLP-110-02-L-D-K-TR	
Data speed of		
I/O-interface	1200 – 115200 bps	
Data speed of Radio	19200 bps (25 kHz channel) /	
Interface	9600 bps (12.5 kHz / 20 kHz channel)	
Data Formats	Asynchronous data	
Modulation	4FSK, GMSK	

	GENERAL	
Operating Voltage	+4.0 VDC	
Temperature Range	-25°C+55°C.	Type approval
		condition
Temperature Ranges	-30 °C +70 °C	Functional
	-25 °C +55 °C	Complies with
		standards
	-40°C +85°C	Storage
Vibration	ISO 9022-36-08	Tested as a
	(sinus/ 10Hz-500Hz/ +/-0.35mm/5g/ 1 Oct./min/ 10	standalone unit
	cycles/ each axis) OPERATING.	(mounted PCB),
		mount on a test
		fixture simulating a
		typical DTE.
Antenna Connector	50 ohm , HIROSE U.FL compatible, I-PEX 20279-001	
	E-01	
Construction	PCB with sheet metal EMI shields	
Size L x W x T	56 x 36 x 6 mm	
Weight	18g	

4.1 Absolute maximum ratings (*

Absolute maximum ratings for voltages on different pins are listed in the following table. Exceeding these values will cause permanent damage to the module.

Parameter	Min	Max
Voltage at VCC_IN	-0.3 V	+5 V
Voltage at ENA_MODEM	-0.3 V	+6 V
Voltage at VCC_IO	-0.5 V	3.75 V
Voltage at digital inputs (except ENA_MODEM)	-0.5 V	3.75 V
Voltage at digital outputs (when no power is applied to unit)	-0.5 V	3.75 V
Antenna port power	n.a.	+14 dBm
Antenna port DC voltage	-10V	+10V

Table. Absolute maximum ratings of module.

(* All voltages are referenced to GND

4.2 DC electrical specifications

Parameter	Condition	Min	Max	Units
VCC_IN	4.0V is considered nominal	Nominal -5%	Nominal +5%	V
ENA_modem, Vlow		0.9	VCC_IN	V
ENA_modem, Vhigh		0	0.4	V
Logic input, Vlow	1.8V <vcc_io<3.3v< td=""><td>-0.3</td><td><0.35*VCC_IO</td><td>V</td></vcc_io<3.3v<>	-0.3	<0.35*VCC_IO	V
Logic input, Vhigh	1.8V <vcc_io<3.3v< td=""><td>0.65*VCC_IO</td><td>3.6</td><td>V</td></vcc_io<3.3v<>	0.65*VCC_IO	3.6	V
Logic output, Vlow	1.8V <vcc_io<3.3v< td=""><td>-</td><td>0.4</td><td>V</td></vcc_io<3.3v<>	-	0.4	V
Logic output, Vhigh	1.8V <vcc_io<3.3v< td=""><td>-</td><td>VCC_IO-0.4</td><td>V</td></vcc_io<3.3v<>	-	VCC_IO-0.4	V
Logic output, max	All logic output except	-	4	mA
current	STAT pin.			
Logic output, max		-	12	mA
current, STAT pin				

Over recommended operating conditions

NOTE: When VCC_IO is supplied internally, VCC_IO is 3.3V.

5 DEFAULT DELIVERY VALUES

DEFAULT VALUES OF THE ADJUSTABLE SETTINGS (the user can change these settings later on)				
Setting	Default value	Range		
Radio frequency				
Operating RX frequency	438.000 MHz	Range: 403-473 MHz		
Reference Frequency	438.000 MHz	Range: 403-473 MHz		
Channel Spacing	12.5 kHz	Range:12.5 kHz, 20 kHz, or 25 kHz		
Radio settings				
Radio Compatibility	SATEL 3AS	SATEL 3AS PacCrest-4FSK PacCrest-GMSK TrimTalk 450s(P) TrimTalk 450s(T) PacCrest-FST		
Addressing				
RX Address	OFF	ON/OFF		
Serial port				
Status	ON	ON		
Data speed	115200 bps	1200 -115200 bps		
Data bits	8	7,8		
Parity bits	None	None, Even, Odd		
Stop bits	1	1		
Handshaking		Handshaking lines apply to the DATA-port		
CTS	Clear to send	Clear to send		
RTS	Ignored	Ignored, Flow Control		
Additional setup				
Error correction	OFF	ON/OFF		
Error check	OFF	ON/OFF		
SL-commands	ON	ON		
FullCR16 Check	OFF	ON/OFF		

6 CONSIDERATIONS

6.1 Emi Interferers

The module is designed to be mounted inside a host device. The module is designed to withstand EMI even beyond type approval requirements. However, a small module which is integrated closely to modern high speed electronics is bound to receive some interference.

To make a working integration, consider the following: EMI can enter the module in four ways:

- 1) Via the antenna (radiation from enclosure enters the antenna)
- 2) Radiated disturbances to the coaxial cable
- 3) Radiation from other electronics / cabling directly to the module
- 4) Conducting through the DTE interface (power, control and data lines).

Because the module is shielded and the DTE interface is filtered, the usually worst method of disturbance is via the antenna port, which is easily overlooked in design. Keep in mind that the radio module has a sensitivity of approx. -115 dBm (depends on mode of operation and speed etc.). While the module has an approx. 10 dB S/N requirement, this constitutes, that any signal entering the radio antenna on receive frequency on a level of < -125 dBm (-115dBm-10dB), causes desensitization of the radio on that particular channel. Example:

An interferer has a level of -100dBm on the frequency 421 MHz. The radio will show an approximate sensitivity of -90dB (-100dBm+S/N requirement 10 dB) on 421 MHz.

Now consider that generic EMC requirements usually have pass/fail criteria of -57dBm (if normalized to the surface of the device). So there is almost a 70dB gap between generic EMC requirements and co-existence requirements between a high sensitivity narrowband radios.

To avoid problems of co-existence a good design should apply:

- 1) Emi shielding in enclosure ambient air interface
- 2) careful layout
- 3) shielding of all digital high speed parts and cables
- 4) Have a clocking plan to avoid clock frequencies causing harmonics on the UHF band of interest.

Number one is to recognize this challenge and act upon it.

SATEL R&D can help in this by participating in design review of the host device, aiming to catch problems early in the design phase.

6.2 <u>Electrostatic discharge</u>

As the module is intended to be embedded in a host application, in a typical use case, the antenna port is the only port of the module directly interface with a surface or contact area subjected to Electrostatic Discharge (ESD).

Thus, the antenna port is the only interface with high level ESD protection. The DTE port also features ESD protection diodes, but is not designed to withstand similar performance as expected from standalone units with enclosures.

Consequently, the module should be subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates this module.

Specification / Requirement	Contact discharge	Air discharge
EN 61000-4-2		
Antenna interface	TBD, target $=\pm8kV$	$>\pm 8 kV$
DTE interface	TBD, target $=\pm 1 \text{kV}$	$>\pm 8 kV$
JEDEC JESD22-A114D (Huma	n Body Model, Test condition	ns: 1.5 k Ω, 100 pF)
Module surface	$\pm 1 \text{kV}$	n.a.

The module fulfills the ESD values listed in the following table.

Table. ESD ratings. At the time of writing, these are test goals, not yet tested.

6.3 Using the device in unmanned high reliability applications

The module features software and hardware watchdogs which are incorporated inside the CPU. While we believe that this is a reliable method of keeping the module in operational condition, there are parts of the module that can't be monitored for proper operation to 100%. For example the module chip has a firmware that resides in the chips RAM. The firmware can't be read back or reloaded, without interrupting reception. Hence the module can't reload this automatically by itself without causing breaks in communication.

To avoid the module from ending up in a state where for example the module chip firmware is corrupted for example by ionizing radiation, it is recommended that the controlling system implements some form of watchdog function for the module.

This can be done for example if the system knows that data should be received every second, and no data has been received for a minute – then do a module restart using the ENA_MODEM pin or by issuing a restart command, or a cold boot by toggling VCC IN low and high again.

7 APPENDIX

7.1 SL-COMMANDS

Category	Command	Description	Response
Addressing	SL#A?	Show all addresses (RX1, RX2, TX1, TX2)	"xxxx,yyyy,zzzz,vvvv"
Addressing	SL#A=xxxx, yyyy, zzzz, vvvv	Set RX/TX addresses (RX1, RX2, TX1, TX2)	"OK" or "ERROR"
Addressing	SL#I?	Get primary addresses (TX1, RX1)	"хххх;уууу"
Addressing	SL#I=xxxx	Set all addresses (RX1, RX2, TX1, TX2) to value xxxx [0000ffff]	"OK" or "ERROR"
Addressing	SL#P?	Get primary transmit address (TX1) and primary receive address (RX1)	"хххх;уууу"
Addressing	SL#P=xxxx;yyyy	Set primary transmit address (TX1) to value xxxx and primary receive address (RX1) to value yyyy [0000ffff]	"OK" or "ERROR"
Addressing	SL#Q?	Get TX address mode	"0" = TX address OFF "1" = TX address ON
Addressing	SL#Q=x	Set TX address ON/OFF. Values of x are: "0" = TX address OFF "1" = TX address ON	"OK" or "ERROR"
Addressing	SL#R?	Get primary receive address (RX1)	"уууу"
Addressing	SL#R=xxxx	Set receive addresses (RX1, RX2) to value xxxx [0000ffff]	"OK" or "ERROR"
Addressing	SL#S?	Get secondary transmit address (TX2) and secondary receive address (RX2)	"хххх;уууу"
Addressing	SL#S=xxxx;yyyy	Set secondary transmit address (TX2) to value xxxx and secondary receive address (RX2) to value yyyy [0000fff]	"OK" or "ERROR"
Addressing	SL#T?	Get primary transmit address (TX1)	"xxxx"
Addressing	SL#T=xxxx	Set transmit addresses (TX1, TX2) to value xxxx [0000fff]	"OK" or "ERROR"
Addressing	SL#₩?	Get RX address mode	"0" = RX address OFF "1" = RX address ON
Addressing	SL#₩=x	Set RX address ON/OFF. Values of x are: "0" = RX address OFF "1" = RX address ON	"OK" or "ERROR"
ChannelList	SL\$A=1	Go to channel list default channel	"OK" or "ERROR"
ChannelList	SL\$D?	Get channel list default channel number	decimal number
ChannelList	SL\$D=n	Set channel list default channel, n is channel number	"OK" or "ERROR"
ChannelList	SL\$E=1	Search free channel Module searches for next traffic-free channel. Listening time of traffic is about 2 seconds Module shows next free channel by activating command again	"OK" followed by "channel n is free" Value of n is channel number of next free channel on channel list

ChannelList	SL\$F?	Get active channel number	decimal number
ChannelList	SL\$F=n	Set module to channel number n in channel list	"OK" or "ERROR"
ChannelList	SL\$R?	Get listening time (seconds) of Search free channel function	decimal number
ChannelList	SL\$R=n	Set listening time (seconds) of Search free channel function	"OK" or "ERROR"
ChannelList	SL\$S=1	Set channel scanning mode When activated, module scans channels one by one and saves RSSI readings to memory	"OK" followed by channel/RSSI info For example: "OKCH 6 - 122 dBm, CH 22 -121 dBm, CH 10003 -122 dBm, "
DataPort	SL%B?	Get serial data parameters	baud rate, character length, parity, number of stop bits (for example "38400, 8, N, 1")
DataPort	SL%B=a,b,c,d	Set serial data port parameters. a = "38400", "19200", "9600", "4800", "2400" or "1200" (defines baud rate) b = "8" (defines character length) c = "N", "O" or "E" (defines parity) d = "1" or "2" (defines number_of_stop bits)	"OK" or "ERROR"
Memory	SL**>	Save current settings as permanent settings	"OK" or "ERROR"
Memory	SL*R>	Restore settings to their factory set values	"OK" or "ERROR"
Memory	SLSOS	Save current settings as permanent settings	"OK" or "ERROR"
ModemInfo	SL!H?	Get radio HW info	"HW:nnnnn"
ModemInfo	SLIV?	Get module "type"	Depending on variant, for example "3AS modem"
ModemInfo	SL%1?	Reserved for various use	Depends on the setup
ModemInfo	SL%C?	Get product number (or other customer info)	Depends on setup
ModemInfo	SL%C="text string"	Sets p/n (or other customer info) if it is empty (command works only once) P/n must be stored to eeprom with command SL**> (Save settings) Otherwise it will be lost when power is turned off	"OK" or error message
ModemInfo	SL%D?	Get Module Type	Depends on model, for example "SATELLINE-3AS"
ModemInfo	SL%H?	Get logic hardware version	Hardware info
ModemInfo	SL%S?	Get Serial Number	Serial number of radio module
ModemInfo	SL%V?	Get firmware revision information	For example "07.20.1.0.4.39"
OperationMode	SL+S=x	Activate sleep mode "1" turn the module into a state where it will hold parts of the radio on, wakeup will take <5ms "2" turns off the entire radio and put CPU into sleep mode. Consumption is lower, but wakeup time is approx <40ms	"OK" when module wakes up

		"5" Turns ON Power Save mode "6" Turns OFF Power Save mode	
RadioFreq	SL!D?	Get lower limit of frequency band 1	"nnn.nnnn MHz"
RadioFreq	SL!U?	Get upper limit of frequency band 1	"nnn.nnnnn MHz"
RadioFreq	SL!W?	Get lower limit of frequency band 2	"nnn.nnnnn MHz"
RadioFreq	SL!Y?	Get upper limit of frequency band 2	"nnn.nnnnn MHz"
RadioFreq	SL&+=nnnn	Set active frequency nnnn channels above center frequency Frequency = Center frequency + nnn*Channel spacing Value of nnnn is [0number of channels/2] For conventional reasons, only 2 or 4 digit	"OK" or "ERROR"
		inputs are valid	
RadioFreq	SL&-=nnnn	Set active frequency nnnn channels below center frequency Frequency = Center frequency – nnnn*Channel spacing Value of nnnn is [0number of channels/2] For conventional reasons, only 2 or 4 digit inputs are valid	"OK" or "ERROR"
RadioFreq	SL&C?	Get center frequency	"nnn.nnnnn MHz"
RadioFreq	SL&F?	Get active frequency	"nnn.nnnnn MHz"
RadioFreq	SL&F=nnn.nnnn n	Set active frequency to nnn.nnnnn MHz	"OK" or "ERROR"
RadioFreq	SL&N?	Get active channel calculated from center frequency (= (active frequency – center frequency)/channel spacing)	decimal number "+nnnn", "-nnnn", "+nn" or "-nn"
RadioFreq	SL&W?	Get channel spacing/channel width	"25.0 kHz", "12.5 kHz" or "20.0 kHz"
RadioFreq	SL&W=xxxx	Set channel spacing. Value of xxxx is: "1250" for 12,5 kHz "2000" for 20 kHz "2500" for 25 kHz Command is supported only by hardware variants with adjustable channel spacing Before using this command, make sure that active frequency matches new channel spacing	"OK" or "ERROR"
RadioProperty	SL%F?	Get status of Error correction (FEC)	"0" = FEC OFF "1" = FEC ON
RadioProperty	SL%F=x	Set Error correction (FEC). Value of x is: "1" Set FEC ON "0" Set FEC OFF	"OK" or "ERROR"
RadioProperty	SL%E?	Get status of Error check and Full CRC16 check modes	"0" Error check off "1" CRC8 Partial "2" CRC8 Full "3" CRC16 Full

RadioProperty	SL%E=x	Set Error check and Full CRC16 check modes. Value of x is: "0" Error check off "1" CRC8 Partial "2" CRC8 Full "3" CRC16 Full	"OK" or "ERROR"
RadioProperty	SL@F?	Get noise level of radio channel	"-xxx dBm"
RadioProperty	SL@R?	Get RSSI (Received Signal Strength Indication) of last received message (dBm)	"-nnn dBm", nnn is a decimal value of field strength between –80 dBm and –118 dBm. Value is available 7 s after reception, after that the response is "<-118 dBm". SATELLINE-3AS Epic returns the stronger value of two receivers.
RadioProperty	SL@S?	Get radio compatibility mode	"0" = Satel 3AS "1" = Option 1 (PacCrest 4-FSK) "2" = Option 2 (PacCrest GMSK) "3" = Option 3 (TrimTalk GMSK)
RadioProperty	SL@S=x	Set radio compatibility mode. Value of x is: 0 = Satel 3AS 1 = Option 1 (PacCrest 4-FSK) 2 = Option 2 (PacCrest GMSK) 3 = Option 3 (TrimTalk GMSK)	"OK" or "ERROR"
RadioProperty	SL@T?	Get current signal threshold (dBm)	"-nnn dBm" (for example "- 80 dBm" or "-112 dBm")
RadioProperty	SL@T=-nnn	Set minimum power level of signal to be received (=Signal Threshold level) Value of nnn is decimal value [80118] in dBm	"OK" or "ERROR"
Reset	SL@X=n	Reset command. Values of n are: "1" Reset BT (applies only to 3AS-OEM11) "9" Reset module	Module resets required blocks

8 VERSION HISTORY

Version history:

Version:	Date:	Remarks:
0.1	2.12.2011	Initial version
1.2	12.6.2012	Official version
1.3	15.6.2012	Service pin modified, page 20
1.4	20.6.2012	Antenna connector modified in table page 22
1.5	26.6.2012	Table 1.1: LDO (Low dropout regulator) added, page 7
1.6	5.7.2012	SL-command list added, page 27, PS-mode added, page 15